VoL. 58, No. 5

SEPTEMBER 1951

THE PSYCHOLOGICAL REVIEW

A MATHEMATICAL MODEL FOR SIMPLE LEARNING

BY ROBERT R. BUSH?! AND FREDERICK MOSTELLER

Harvard University ®

Introduction

Mathematical models for empirical
phenomena aid the development of a
science when a sufficient body of quan-
titative information has been accumu-
lated. This accumulation can be used
to point the direction in which models
should be constructed and to test
the adequacy of such models in their
interim states. Models, in turn, fre-
quently are useful in organizing and
interpreting experimental data and in
suggesting new directions for experi-
mental research. Among the branches
of psychology, few are as rich as learn-
ing in quantity and variety of available
data necessary for model building.
Evidence of this fact is provided by
the numerous attempts to construct
quantitative models for learning phe-
nomena. The most recent contribu-
tion is that of Estes (2).

In this paper we shall present the
basic structure of a new mathematical
model designed to describe some simple
learning situations. We shall focus
attention on acquisition and extinction
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in experimental arrangements using
straight runways and Skinner boxes,
though we believe the model is more
general; we plan to extend the model
in order to describe multiple-choice
problems and experiments in generali-
zation and discrimination in later
papers. Wherever possible we shall
discuss the correspondence between
our model and the one being developed
by Estes (2), since striking parallels
do exist even though many of the
basic premises differ. Our model is
discussed and developed primarily in
terms of reinforcement concepts while
Estes’ model stems from an attempt
to formalize association theory. Both
models, however, may be re-inter-
preted in terms of other sets of con-
cepts. This state of affairs is a com-
mon feature of most mathematical
models. An example is the particle
and wave interpretations of modern
atomic theory.

We are concerned with the type of
learning which has been called “‘instru-
mental conditioning” (5), ‘‘operant
behavior” or ‘‘type R conditioning”
(10), and not with ‘classical condi-
tioning"' (5), ‘‘Pavlovian conditioning™
or “type S conditioning’ (10). We
shall follow Sears (9) in dividing up
the chain of events as follows: (1) per-
ception of a stimulus, (2) performance
of a response or instrumental act, (3)
occurrence of an environmental event,
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and (4) execution of a goal response.
Examples of instrumental responses
are the traversing of a runway, press-
ing of a lever, etc. By environmental
events we mean the presentation of a
“reinforcing stimulus" (10) such as
food or water, but we wish to include
in this category electric shocks and
other forms of punishment, removal
of the animal from the apparatus, the
sounding of a buzzer, etc. Hence any
change in the stimulus situation which
follows an instrumental response is
called an environmental event. A goal
response, such as eating food or drink-
ing water, is not necessarily involved
in the chain. It is implied, however,
that the organism has a motivation
or drive which corresponds to some
goal response. Operationally speak-
ing, we infer a state of motivation
from observing a goal response.

Probabilities and How They Change

As a measure of behavior, we have
chosen the probability, p, that the
instrumental response will occur dur-
ing a specified time, k. This proba-
bility will change during conditioning

and extinction and will be related to *

experimental variables such as latent
time, rate, and frequency of choices.
The choice of the time interval, A, will
be discussed later. We conceive that
the probability, ¢, is increased or de-
creased a small amount after each
accurrence of the response and that
the determinants of the amount of
change in p are the environmental
events and the work or effort expended
in making the response. In addition,
of course, the magnitude of the change
depends upon the properties of the
arganism and upon the value of the
probability before the response oc-
curred. For example, if the proba-
bility was already unity, it could not
be increased further.

Our task, then, is to describe the
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change in probability which occurs
after each performance of the response
being studied. We wish to express
this change in terms of the probability
immediately prior to the occurrence
of the response and so we explicitly
assume that the change is independent
of the still earlier values of the proba-
bility. For convenience in describing
the step-wise change in probability,
we introduce the concept of a mathe-
matical operator. The notion is ele-
mentary and in no way mysterious:
an operator Q when applied to an
operand p yields a new quantity (Qp
(read Q operating on p). Ordinary
mathematical operations of addition,
multiplication, differentiation, etc.,
may be defined in terms of operators.
For the present purpose, we are inter-
ested in a class of operators Q which
when applied to our probability p will
give a new value of probability Qp.
As mentioned above, we are assuming
that this new probability, 0p, can be
expressed in terms of the old value, p.
Supposing @Qp to be a well-behaved
function, we can expand it as a power
series in p:

Qp=a+apt+apr+--- (1)

where aq, a1, as, - - - are constants inde-
pendent of p. In order to simplify the
mathematical analysis which follows,
we shall retain only the first two terms
in this expansion. Thus, we are as-
suming that we can employ operators
which represent a linear transforma-
tion on p. If the change is small, one
would expect that this assumption
would provide an adequate first ap-
proximation. Our operator Q is then
completely defined as soon as we
specify the constants g and ay; this
is the major problem at hand. For
reasons that will soon be apparent, we
choose toletag=aanda,=1—a—b.
This choice of parameters permits us
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to write our operator in the form
Qp=p+a(l —p)—bp. (2)

This is our basic operator and equation
(2) will be used as the cornerstone for
our theoretical development. To main-
tain the probability between 0 and 1,
the parameters ¢ and & must also lie
between 0 and 1. Since a is positive,
we see that the term, a(l — p), of
equation (2) corresponds to an incre-
ment in p which is proportional to the
maximum possible increment, (1 — p).
Moreover, since b is positive, the term,
—bp, corresponds to a decrement in p
which is proportional to the maximum
possible decrement, —p. Therefore,
we can associate with the parameter a
those factors which always increase
the probability and with the param-
eter b those factors which always de-
crease the probability. It is for these
reasons that we rewrote our operator
in the form given in equation (2).

We associate the event of presenting
a reward or other reinforcing stimulus
with the parameter a, and we assume
that ¢ = 0 when no reward is given
as in experimental extinction. With
the parameter b, we associate events
such as punishment and the work
required in making the response. (See
the review by Solomon [11] of the
influence of work on behavior.) In
many respects, our term, a{(l — p),
corresponds to an increment in ‘‘ex-
citatory potential”’ in Hull's theory
(6) and our term, —bp, corresponds to
an increment in Hull's “inhibitory
potential.”

In this paper, we make no further
attempt to relate our parameters, a
and b, to experimental variables such
as amount of reward, amount of work,
strength of motivation, etc. In com-
paring our theoretical results with
experimental data, we will choose
values of @ and b which give the best
fit. In other words, our model at the
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present time is concerned only with
the form of conditioning and extinc-
tion curves, not with the precise values
of parameters for particular conditions
and particular organisms.

Continuous Reinforcement and
Extinction

Up to this point, we have discussed
only the effect of the occurrence of a
response upon the probability of that
response. Since probability must be
conserved, 1.e., since in a time interval
k an organism wiil make some response
or no response, we must investigate
the effect of the occurrence of one
response upon the probability of an-
other response. In a later paper, we
shall discuss this problem in detail,
but for the present purpose we must
include the following assumption. We
conceive that there are two general
kinds of responses, overt and non-
overt. The overt responses are sub-
divided into classes 4, B, C, etc. If
an overt response A occurs and is
neither rewarded nor punished, then
the probability of any mutually ex-
clusive overt response B is not changed.
Nevertheless, the probability of that
response 4 is changed after an occur-
rence on which it is neither rewarded
nor punished. Since the total proba-
bility of all responses must be unity,
it follows that the probability gained
or lost by response 4 must be compen-
sated by a corresponding loss or gain
in probability of the non-overt re-
sponses. This assumption is impor-
tant in the analysis of experiments
which use a runway or Skinner box,
for example. In such experiments a
single class of responses is singled out
for study, but other overt responses
can and do occur. We defer until a
later paper the discussion of experi-
ments in which two or more responses
are reinforced differentially.

With the aid of our mathematical
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operator of equation (2) we may now
describe the progressive change in the
probability of a response in an experi-
ment such as the Graham-Gagné run-
way (3) or Skinner box (10) in which
the same environmental events follow
each occurrence of the response. We
need only apply our operator Q re-
peatedly to some initial value of the
probability p. Each application of
the operator corresponds to one occur-
rence of the response and the sub-
sequent environmental events. The
algebra involved in these manipula-
tions isstraightforward. Forexample,
if we apply Q to p twice, we have

Fp=0@p)=a+(1~-a—b)Qp
=a+{(1—a—-0)
X[e+(1—a-0d)p] (3)

Moreover, it may be readily shown
that if we apply Q to p successively »
times, we have

a a
a+b—(a+b—p)

X{(1—a-=-58)» 4

op =

Provided ¢ and & are not both zero or
both unity, the quantity (1 — a — &)
tends to an asymptotic value of zero
as n increases. Therefore, Q"p ap-
proaches a limiting value of a/(a + b)
as n becomes large. Equation (4)
then describes a curve of acquisition.
It should be noticed that the asymp-
totic value of the probability is not
necessarily either zero or unity. For
example, if a = b (speaking roughly
this implies that the measures of re-
ward and work are equal), the ultimate
probability of occurrence in time A of
the response being studied is 0.5.
Since we have assumed thata = 0
when no reward is given after the
response occurs, we may describe an
extinction trial by a special operator
E which is equivalent to our operator
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Q of equation (2) with a set equal to
Zero:

Ep=p—bp=(10=0p. (5

It follows directly that if we apply
this operator E to p successively for »
times we have

Erp = (1-10b)p. (6)

This equation then describes a curve
of experimental extinction.

Probability, Latent Time, and Rate

Before the above results on continu-
ous reinforcement and extinction can
be compared with empirical results,
we must first establish relationships
between our probability, p, and ex-
perimental measures such as latent
time and rate of responding. In order
to do this, we must have a model.
A simple and useful model is the one
described by Estes (2). Let the ac-
tivity of an organism be described by a
sequence of responses which are inde-
pendent of one another. (For this
purpose, we consider doing ‘‘nothing"”
to be a response.) The probability
that the response or class of responses
being studied will occur first is p.
Since we have already assumed that
non-reinforced occurrences of other
responses do not affect p, one may
easily calculate the mean number of
responses which will occur before the
response being studied takes place.
Estes (2) has presented this calcula-
tion and shown that the mean number
of responses which will occur, includ-
ing the one being studied, is simply 1/p.
In that derivation it was assumed that
the responses were all independent of
one another, z.e., that transition prob-
abilities between pairs of responses are
the same for all pairs. This assump-
tion is a bold one indeed (it is easy to
think of overt responses that cannot
follow one another), but it appears to
us that any other assumption would
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require a detailed specification of the
many possible responses in each ex-
perimental arrangement being consid-
ered. (Miller and Frick (8] have
attempted such an analysis for a par-
ticular experiment.) It is further
assumed that every response requires
the same amount of time, A, for its
performance. The mean latent time,
then, is simply k& times the mean num-
ber of responses which occur on a
“trial’’:

L=—-. (7N

The time, k, required for each response
will depend, of course, on the organism
involved and very likely upon its
strength of drive or motivation.

The mean latent time, L, is ex-
pressed in terms of the probability, p,
by equation (7), while this probability
is given in terms of the number of
trials, #, by equation (4). Hence we
may obtain an expression for the mean
latent time as a function of the num-
ber of trials. It turns out that this
expression is identical to equation (4)
of Estes’ paper (2) except for differ-
ences in notation. (Estes uses T in
place of our #; our use of a difference
equation rather than of a differential
equation gives us the term (1 ~ a — b)
instead of Estes’ e¢.) Estes fitted
his equation to the data of Graham
and Gagné (3). Our results differ
from Estes’ in one respect, however:
‘the asymptotic mean latent time in
Estes’ model is simply %, while we

obtain
b
Lo = h(" * ) .
a

This equation suggests that the final
mean latent time depends on the
amount of reward and on the amount
of required work, since we have as-
sumed that ¢ and b depend on those
two variables, respectively.* This con-
clusion seems to agree with the data

8)
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of Grindley (4) on chicks and the data
of Crespi (1) on white rats.

Since equation (7) is an expression
for the mean time between the end of
one response of the type being studied
and the end of the next response of the
type being studied, we may now cal-
culate the mean rate of responding in
a Skinner-box arrangement. If { rep-
resents the mean time required for the
occurrence of n responses, measured
from some arbitrary starting point,
then each occurrence of the response
being studied adds an increment in {
as follows:

vt ©
P
If the increments are sufficiently small,
we may write them as differentials and
obtain for the mean rate of responding
dn P
a = h e
where o = 1/h. We shall call w the
“activity level”” and by definition w
is the maximum rate of responding
which occurs when p» = 1 obtains.

(10)

The Free-Responding Situation

In free-responding situations, such
as that in Skinner box experiments, one
usually measures rate of responding or
the cumulative number of responses
versus time. To obtain theoretical
expressions for these relations, we first
obtain an expression for the proba-
bility p as a function of time. From
equation (2), we see that if the re-
sponse being studied occurs, the change
in probability isAp = a(1 — p) — bp.
We have already assumed that if other
responses occur and are not reinforced,
no change in the probability of occur-
rence of the response being studied will
ensue. Hence the expected change in
probability during a time interval &
is merely the change in probability
times the probability p that the re-
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sponse being studied occurs in that
time interval:

Expected (Ap)
= pla(l —p) —bp}. (11)

The expected rate of change of proba-
bility with time is then this expression
divided by the time k. Writing this
rate as a derivative we have

@ _ opla(t — p) — bp} (12)

dt
where, as already defined, w = 1/k is
the activity level. This equation is
easily integrated to give p as an ex-
plicit function of time ¢. Since equa-
tion (10) states that the mean rate of
responding, dn/dt, is w times the prob-
ability p, we obtain after the inte-
gration

é’_‘_ wPo =V

dt ~ po(14u)+[1—po(14u)Jemeet
(13)

where we have let u = b/a. The

initial rate of responding at £ = 0 is
Vo = wpo, and the final rate after a
very long time ¢ is

dn w )

V“’—[dt];-m—l—{—u_l-{—b/a' (14)
Equation (13) is quite similar to the
expression obtained by Estes except
for our inclusion of the ratio # = b/a.
The final rate of responding according
to equation (14), increases with e and
hence with the amount of reward given
per response, and decreases with b and
hence with the amount of work per
response. These conclusions do not
follow from Estes’ results (2).

An expression for the cumulative
number of responses during continu-
ous reinforcement is obtained by inte-
grating equation (13) with respect to
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time £. The result is

1 1
1 +u{“’t+31°g[?"(1 +u)

7n =
X (1 — et + e—w]} .5)

As the time ¢ becomes very large, the
exponentials in equation (15) approach
zero and n becomes a linear function
of time. This agrees with equation
(14) which says that the asymptotic
rate is a constant. Both equations
(13) and (15) for rate of responding
and cumulative number of responses,
respectively, have the same form as
the analogous equations derived by
Estes (2) which were fitted by him to
data on a bar-pressing habit of rats.
The essential difference between Estes'
results and ours is the dependence,
discussed above, of the final rate upon
amount of work and amount of reward
per trial.

We may extend our analysis to give
expressions for rates and cumulative
responses during extinction. Since we
have assumed that ¢ = 0 during ex-
tinction, we have in place of equa-
tion (12)

- = —wbp? (16)

which when integrated for p and mul-
tiplied by w gives

dm wpe

a1+ wbpa

where p. is the probability at the be-
ginning of extinction. The rate at the
beginning of extinction is V, = wpe..
Hence we may write equation (17) in
the form

an

dm V.

a1+ v (18

An integration of this equation gives
for the cumulative number of extinc-
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tion responses

log [1 + V.,bt]

= %log (-II’;) . (19)

This result is similar to the empirical
equation m = K log ¢, used by Skinner
in fitting experimental response curves
(10). Our equation has the additional
advantage of passing through the ori-
gin as it must.

It may be noted that the logarithmic
character of equation (19) implies that
the total number of extinction re-
sponses, m, has no upper limit. Thus,
if our result is correct, and indeed if
Skinner’s empirical equation is correct,
then there is no upper limit to the
size of the ‘“‘reserve” of extinction re-
sponses. For all practical purposes,
however, the logarithmic variation is
so slow for large values of the time ¢,
it is justified to use some arbitrary
criterion for the “completion” of ex-
tinction. We shall consider extinction
to be ‘‘complete’” when the mean rate
of responding V has {allen to some
specified value, V;. Thus, the ‘‘total”
number of extinction responses from
this criterion is

m=

SRl

1 Ve

We now wish to express this ''total”
number of extinction responses, mr,
as an explicit function of the number
of preceding reinforcements, n. The
only quantity in equation (20) which
depends upon # is the rate, V,, at the
beginning of extinction. If we assume
that this rate is equal to the rate at
the end of acquisition, we have from
equations (4) and (10)

é—’::l‘,p"::

Visx

~ (Vamax — Vo)1 —a — ) (21)
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where we have let

Vs = (22)

-2
YeFo’
and where V, = wpp is the rate at the
beginning of acquisition. If we now
substitute equation (21) into equation
(20), we obtain

1 {Vm_ Vass _ Vo
TEROR 7Y, v, "~ 7,
X(l—a—b)"}. (23)

This result may be compared with the
data of Williams (12) obtained by
measuring the ‘‘total”’ number of ex-
tinction responses after 5, 10, 30 and
90 reinforcements. From the data,
the ratio Vone/V, was estimated to
be about 5, and the ratio Vy/V, was
assumed to be about unity. Values
ofa = 0.014 and & = 0.026 were chosen
in fitting equation (23) to the data.
The result is shown in the figure.

Fixed Ratio and Random Ratto
Reinforcement

In present day psychological lan-
guage, the term ““fixed ratio” (7) refers
to the procedure of rewarding every
kth response in a free-responding situ-
ation (¢ = 2,3, ---). Ina ‘“random
ratio” schedule, an animal is rewarded
on the average after k responses but the
actual number of responses per reward
varies over some specified range. We
shall now derive expressions for mean
rates of responding and cumulative
numbers of responses for these two
types of reinforcement schedules. If
we apply our operator Q, of equation
(2), to a probability p, and then apply
our operator E, of equation (5), to Qp
repeatedly for (¢ — 1) times, we obtain

(E=1Q)p = (1—-b)~[p+a(1—p)—bp]
=p+a'(1-p)—b'p (24)
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Data from Williams (12).

where
a’'=a(l—-b)!

=af{l—(k—-1)b+---}=a (25)
and

b =1—(1—b)*
E—1
=kbj1~—o—b+ .- kb, (26)

The symbol = means “‘approximately
equal to.” In the present case the
exact approach would be to retain the
primes on a and & throughout; how-
ever the approximations provide a link
with the previous discussion. The
approximations on the right of these
two equations are justified if kb is
small compared to unity. Now the
mean change in p per response will be
the second and third terms of equation
(24) divided by &:
a’ b’
Ap=7A=p)—7p
(27)

a

This equation is identical to our result
for continuous reinforcement, except
that a//k replaces a and b’/k replacesd

We may obtain a similar result for
the ‘‘random ratio’’ schedule as fol-
lows: After any response, the proba-
bility that Q operates on p is 1/k and
the probability that E operates on
pis (1 — 1/k). Hence the expected
change in p per response is

Expected (Ap) = %Qp
+ (1 - 1/BEp — p.

After equations (2) and (5) are inserted
and the result simplified, we obtain
from equation (28)

Expected (Ap)

=21 =p) —bp. (29)

(28)

This result is identical to the approxi-
mate result shown in equation (27) for
the fixed ratio case. Since both equa-
tions (27) and (29) have the same
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form as our result for the continuous
reinforcement case, we may at once
write for the mean rate of responding
an equation identical to equation (13),
except that a is replaced by a'/k.
Similarly, we obtain an expression for
the final rate of responding identical
to equation (14) except that g is re-
placed by a’/k. This result is meant
to apply to both fixed ratio and ran-
dom ratio schedules of reinforcement.

In comparing the above result for
the asymptotic rates with equation
(14) for continuous reinforcement, we
must be careful about equating the
activity level, w, for the three cases
(continuous, fixed ratio and random
ratio reinforcements). Since 1/w rep-
resents the minimum mean time be-
tween successive responses, it includes
both the eating time and a ‘“‘recovery
time.” By the latter we mean the
time necessary for the animal to re-
organize itself after eating and get in
a position to make another bar press
or key peck. In the fixed ratio case,
presumably the animal learns to look
for food not after each press or peck,
as in the continuous case, but ideally
only after every k response. There-
fore both the mean eating time and
the mean recovery time per response
are less for the fixed ratio case than
for the continuous case. In the ran-
dom ratio case, one would expect a
similar but smaller difference to occur.
Hence, it seems reasonable to conclude
that the activity level, w, would be
smaller for continuous reinforcement
than for either fixed ratio or random
ratio, and that  would be lower for
random ratio than for fixed ratio when
the mean number of responses per
reward was the same. Moreover, we
should expect that w would increase
with the number of responses per re-
ward, k. Even if eating time were
subtracted out in all cases we should
expect these arguments to apply.
Without a quantitative estimate of
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the mean recovery time, we see no
meaningful way of comparing rates of
responding under continuous reinforce-
ment with those under fixed ratio and
random ratio, nor of comparing rates
under different ratios (unless both
ratios are large). The difficulty of
comparing rates under various rein-
forcement schedules does not seem to
be a weakness of our model, but rather
a natural consequence of the experi-
mental procedure. However, the im-
portance of these considerations hinges
upon the orders of magnitude involved,
and such questions are empirical ones.

Apertodic and Periodic Retnforcement

Many experiments of recent years
were designed so that an animal was
reinforced at a rate aperiodic or peri-
odic in time (7). The usual procedure
is to choose a set of time intervals,
T, - -+, T, which have a mean value
T. Some arrangement of this set is
used as the actual sequence of time
intervals between rewards. The first
response which occurs after one of
these time intervals has elapsed is
rewarded.

To analyze this situation we may
consider %k, the mean number of re-
sponses per reward, to be equal to the
mean time interval T multiplied by
the mean rate of responding:

it Tuwp.

(30)
Equation (29) for the expected change
in probability per response is still valid
if we now consider & to be a variable

as expressed by equation (30). Thus,
the time rate of change of p is

dp a R

= T(l — p) — wbp?®.  (31)

With a little effort, this differential
equation may be integrated from 0 to
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an
@GP
w(s=1)+ (s+1)Kere'T
S e — (32

where

z=2wTb/a, (33)

s= 41 4 2z, (34)

K= (142po—s)/(1+2po+s5). (35)
For arbitrarily large times ¢, the final

rate is
&) 261 @36
dt famct) - 2 s ’

For sufficiently large values of T,
z becomes large compared to unity
and we may write approximately

(-‘2—?)‘“ = w¥2/z = wVa/buT. (37)

Thus, for large values of T, the final
rate varies inversely as the square root
of T

Periodic reinforcement is a spe-
cial case of aperiodic reinforcement
in which the set of time intervals,
T4, - - -, Ta, discussed above, consists
of a single time interval, 7. Thus,
all the above equations apply to both
periodic and aperiodic schedules. One
essential difference is known, however.
In the periodic case the animal can
learn a time discrimination, or as is
sometimes said, eating becomes a cue
for not responding for a while. This
seems to be an example of stimulus
discrimination which we will discuss
in a later paper.

Extinction After Partial Reinforcement
Schedules

In the discussion of extinction in
earlier sections, it may be noted that
the equations for mean rates and
cumulative responses depended on the
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previous reward training only through
Ve the mean rate at the beginning of
extinction. Hence, we conclude that
equations (18) and (19) apply to
extinction after any type of reinforce.
ment schedule. However, the quan.
tities V. and & in our equations may
depend very much on the previous
training. Indeed, if our model makes
any sense at all, this must be the case,
for ‘‘resistance’’ to extinction is known
to be much greater after partial rein.
forcement training than after a con-
tinuous reinforcement schedule (7).
Since the rate at the start of extinc-
tion, V,, is nearly equal to the rate at
the end of acquisition, it will certainly
depend on the type and amount of
previous training. However, the log-
arithmic variation in equations (19)
and (20) is so slow, it seems clear that
empirical results demand a dependence
of b on the type of reinforcement
schedule which preceded extinction.
We have argued that b increases with
the amount of work required per re-
sponse. We will now try to indicate
how the required work might depend
upon the type of reinforcement sched-
ule, even though the lever pressure or
key tension is the same. For con-
tinuous reinforcement, the response
pattern which is learned by a pigeon,
for example, involves pecking the key
once, lowering its head to the food
magazine, eating, raising its head, and
readjusting its body in preparation for
the next peck. This response pattern
demands a certain amount of effort.
On the other hand, the response pat-
tern which is learned for other types
of reinforcement schedules is quite
different; the bird makes several key
pecks before executing the rest of
the pattern just described. Thus we
would expect that the average work
required per key peck is considerably
less than for continuous reinforcement.
This would imply that b is larger and
thus “resistance’ to extinction is less
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for continuous reinforcement than for
all other schedules. This deduction
is consistent with experimental results
(7). However, this is just part of the
story. For one thing, it seems clear
that it is easier for the organism to
discriminate between continuous rein-
forcement and extinction; we have not
handled this effect here.

Summary

A mathematical model for simple
learning is presented. Changes in the
probability of occurrence of a response
in a small time h are described with
the aid of mathematical operators.
The parameters which appear in the
operator equationsare related to exper-
imental variables such as the amount
of reward and work. Relations be-
tween the probability and empirical
measures of rate of responding and
latent time are defined. Acquisition
and extinction of behavior habits are
discussed for the simple runway and
for the Skinner box. Egquations of
mean latent time as a function of trial
number are derived for the runway
problem; equations for the mean rate
of responding and cumulative numbers
of responses versus time are derived
for the Skinner box experiments. An
attempt is made to analyze the learn-
ing process with various schedules of
partial reinforcement in the Skinner
type experiment. Wherever possible,
the correspondence between the pres-
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ent model and the work of Estes (2)
is pointed out.
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