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Concept learning, the ability to extract commonalities and highlight distinctions across a set of related experiences to build organized
knowledge, is a critical aspect of cognition. Previous reviews have focused on concept learning research as a means for dissociating
multiple brain systems. The current review surveys recent work that uses novel analytical approaches, including the combination of
computational modeling with neural measures, focused on testing theories of specific computations and representations that contribute
to concept learning. We discuss in detail the roles of the hippocampus, ventromedial prefrontal, lateral prefrontal, and lateral parietal
cortices, and how their engagement is modulated by the coherence of experiences and the current learning goals. We conclude that the
interaction of multiple brain systems relating to learning, memory, attention, perception, and reward support a flexible concept-learning
mechanism that adapts to a range of category structures and incorporates motivational states, making concept learning a fruitful
research domain for understanding the neural dynamics underlying complex behaviors.
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Introduction
How do we build new concepts from our experiences to support
generalization to novel situations? How do we categorize a new
animal as a dog given previous experiences with dogs (Fig. 1)? Do
we follow rules and definitions or base decisions on similarity
(Bruner et al., 1967; Rosch and Mervis, 1975)? Do we retrieve
representations of specific dogs we encountered or have we
formed an abstract concept of a dog that transcends specific ex-
periences (Posner and Keele, 1968; Nosofsky, 1986)?

Over the last few decades, a wide range of cognitive processes
and brain regions have been implicated in concept learning, in-
cluding those related to memory, reasoning, decision-making,
and reward processing. Early neuroscience work on category
learning focused on establishing how different modes of category

acquisition involved dissociable brain systems. For example, dif-
ferent types of categories may be acquired through memorization
of individual category examples by the episodic memory system,
hypothesis-testing, and rule-abstraction supported by the lateral
prefrontal cortex, or incremental learning processes such as
perceptual learning or feedback-based procedural learning sup-
ported by non-declarative memory systems (Aizenstein et al.,
2000; Nomura et al., 2007; Casale and Ashby, 2008; Zeithamova
et al., 2008; Ashby and Maddox, 2011; Morrison et al., 2015).
Such system-level dissociations have been the focus of several
previous reviews of category learning research (Ashby and Mad-
dox, 2005, 2011; Seger and Miller, 2010).

Current neuroscience research has begun to move past the
system-level dissociations toward developing computational the-
ories to test specific candidate mechanisms for brain regions in-
volved in category learning. This new computational revolution
has focused heavily on two neurobiological divisions: the medial
temporal lobes and the prefrontal cortex. Work on the medial
temporal lobes has focused on how functions ascribed to the
hippocampus, such as pattern completion, pattern separation,
and memory integration, can be applied to concept learning and
categorization (Mack et al., 2018). Although the initial patient
work suggested a limited role for the hippocampus in concept
learning (Knowlton and Squire, 1993; Squire and Knowlton,
1995), by combining existing formal models of learning theories
(Posner and Keele, 1968; Nosofsky, 1986; Love et al., 2004) with
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human neuroimaging, recent work posits
a more central role (Davis et al., 2012a,b;
Mack et al., 2016; Schapiro et al., 2017;
Bowman and Zeithamova, 2018). Within
the prefrontal cortex, ventromedial pre-
frontal cortex has been of interest in cate-
gorization because of its involvement in
other forms of generalization, such as rep-
resentation of schemas (van Kesteren et
al., 2012; Gilboa and Marlatte, 2017) and
linking related memories into an inte-
grated representation (Schlichting and
Preston, 2015). Hierarchical control the-
ory, suggesting a possible rostrocaudal
gradient of representational abstraction
across the lateral prefrontal cortex (Badre
and D’esposito, 2009; Badre and Nee,
2018), has inspired recent work on char-
acterizing how distinct category learning
contexts differentially engage specific cognitive control mecha-
nisms and reasoning processes supported by subregions of lateral
PFC (Paniukov and Davis, 2018). Finally, computational neuro-
imaging approaches have identified processes and representa-
tions contributed by the lateral parietal cortex, a region that has
not played a major role in systems-level dissociations, but impor-
tantly contains both stimulus-specific and categorical memory
representations (Freedman and Assad, 2006, 2016; Kuhl and
Chun, 2014; Sestieri et al., 2017). The present review covers these
recent developments, highlighting how innovative approaches that
bridge computational modeling and neural measures provide novel
insights into the computations and representations involved in con-
cept learning.

The dynamic formation of concept representations during
category learning
Concept learning is rapid and flexible; we can adapt newly-
learned knowledge to novel situations or changing goals with
seemingly little effort. Characterizing the neural mechanisms that
support such rapid conceptual learning, especially learning in the
face of evolving learning goals, is a critical focus of ongoing re-
search. One recent study (Mack et al., 2016) addressed this topic
with an approach combining fMRI and computational modeling
to identify the neural machinery of new concept formation. Mo-
tivated by human and animal work demonstrating attentional
and contextual influences on representations in the hippocam-
pus (Fenton et al., 2010; Aly and Turk-Browne, 2016), this study
targeted the formation of new concepts in hippocampal activa-
tion patterns. Across two learning tasks, participants learned to
categorize multidimensional visual objects according to different
category structures: a simple rule based only on a single feature
dimension and a more complicated rule based on two feature
dimensions. Critically, the visual objects were constant across the
tasks, but the underlying organization of the objects into catego-
ries differed. This approach required participants to attend to
different features between tasks and build new conceptual repre-
sentations that best matched the underlying category structure.

To investigate the nature of the representations each partici-
pant learned in the two tasks, Mack et al. (2016) used SUSTAIN,
a computational model that accounts well for behavioral re-
sponses during category learning (Love et al., 2004; Love and
Gureckis, 2007). Fitting this model separately to each partici-
pant’s learning behavior provided predictions about how cate-
gory items were represented in a multidimensional space, and

thus how similar they may be perceived by the participant, across
the two tasks. The logic followed such that the more similar any
two items were represented by the model, the more similar
should be their neural activation patterns. To test the role of the
hippocampus in building flexible concept knowledge, the model-
based predictions were used to interrogate the structure of acti-
vation patterns in the hippocampus with representational
similarity analysis (Kriegeskorte et al., 2008). If the hippocampus
plays a role in building flexible concept knowledge, SUSTAIN�s
predictions of category structure should be evident in hippocam-
pal representations. Indeed, a region in anterior hippocampus
showed neural representations that were consistent with the
model-based similarity matrices. In other words, as learning
goals changed, hippocampal representations reorganized to re-
flect the diagnostic information important for the current task.

Although hippocampal functions offer a powerful toolset for
building new concepts (Kumaran et al., 2009; Schapiro et al.,
2017), the hippocampus does not act alone. In particular, both
rodent (Place et al., 2016; Guise and Shapiro, 2017) and human
(van Kesteren et al., 2012; Zeithamova et al., 2012; Schlichting
and Preston, 2016) findings point to a functional alliance be-
tween hippocampus and medial PFC when encoding new infor-
mation that overlaps with prior experiences (Preston and
Eichenbaum, 2013). Consistent with this notion, Mack et al.
(2016) found that anterior hippocampus demonstrated a strong
functional coupling with ventromedial PFC (vmPFC) during
early learning when concept updating is most potent. This region
of vmPFC may, in fact, play an important role itself in guiding
attentional tuning during new learning. Neural representations
in vmPFC throughout new concept learning have recently been
shown to systematically track the efficient mapping of stimuli to
categories in a manner consistent with highlighting information
that matters and down-weighting irrelevant features (Mack et al.,
2019).

Specific and generalized representations
supporting categorization
What type or types of memory representations are formed during
concept learning and used in categorization decisions has been
the focus of cognitive categorization research for decades (Posner
and Keele, 1968; Homa, 1973; Medin and Schaffer, 1978; Nosof-
sky, 1986). Combining neuroimaging with formal models of
categorization made it possible to start answering such represen-
tational questions in neuroscience research. A study by Mack et

Figure 1. Concept representations per the exemplar and prototype models. Exemplar model assumes that categories are
represented by specific exemplars. Prototype model assumes that categories are represented by their central tendency (proto-
type), which is abstracted from specific exemplars and embodies all characteristic features.
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al. (2013) tested the degree to which brain signals are consistent
with the exemplar model (assuming that categories are repre-
sented by the specific category examples one encountered) and
the prototype model of categorization (assuming that categories
are represented by generalized category representations, or pro-
totypes, abstracted across exemplars). These models are schemat-
ically depicted in Figure 1. They identified a network of regions
representing specific exemplars during generalization judgments
but found no evidence of generalized prototype representations.
The categories tested by Mack et al. (2013) had relatively low
coherence, where some stimuli were equally distant from the
central tendency of their category and that of the other category.
Bowman and Zeithamova (2018) used a similar model-based
fMRI methodology, but a different category structure that in-
cluded greater coherence of stimuli within each category. They
found evidence consistent with the predictions of the prototype
model in both behavior and the brain. Bowman and Zeithamova
(2019) then tested the idea that concept learning may involve
both specific (exemplar) and generalized (prototype) representa-
tions under different conditions and found that coherence of the
underlying category structure is a critical factor determining the
success of forming a generalized category representation (Minda
and Smith, 2001).

Theoretically, the same network of regions could be involved
in concept representation across different category structures,
with only the nature of the representations formed being differ-
ent. However, recent findings are more indicative of distinct neu-
ral mechanisms existing for representing specific instances versus
summary representations, with these mechanisms being differ-
entially engaged for different category structures. Mack et al.
(2013) identified a network of regions representing specific ex-
emplars that included lateral prefrontal and parietal regions im-
plicated in supporting memory for specific events and preventing
interference in episodic memory tasks (Badre and Wagner, 2005;
Kuhl and Chun, 2014). Regions tracking prototype model pre-
dictions by Bowman and Zeithamova (2018) included hip-
pocampus and ventromedial prefrontal cortex. Although no
above-threshold evidence for exemplar representation during
concept generalization was found in that study, subthreshold ex-
emplar regions were consistent with those found by Mack et al.
(2013) and distinct from those tracking prototype predictors.
Thus, distinct neural mechanisms creating different types of may
be engaged in concept learning, with their contribution varying
across category structure. We will discuss further evidence for
this notion from nonhuman primate research later in this review
(Wutz et al., 2018).

The notion that both specific and generalized memories may
represent concepts and support generalization aligns with find-
ings from a different generalization task: episodic inference. In a
typical task, participants learn a set of overlapping associations,
such as A relates to B and B relates to C (Underwood, 1949).
Although many behavioral and neuroimaging studies showed
that reactivation of A during BC-learning can lead to interference
and forgetting of C (Anderson, 2003; Kuhl et al., 2011), another
outcome is episodic inference, where a relation is inferred be-
tween A and C. Although episodic inference can be achieved
on-demand, from separate memories of individual events (Ku-
maran and McClelland, 2012), it can also result from memory
integration, whereby new events are linked with prior related
memories into a combined representation (Schlichting et al.,
2014; Richter et al., 2016; Zeithamova and Preston, 2017). Nota-
bly, the same hippocampal-vmPFC interactions implicated in con-
cept learning (Kumaran et al., 2009; Bowman and Zeithamova,

2018; Frank et al., 2019) have been implicated in memory integra-
tion and inference in both neuroimaging (Zeithamova et al., 2012;
Schlichting et al., 2015) and lesion work (Dusek and Eichen-
baum, 1997; Ryan et al., 2016; Spalding et al., 2018). Finally, the
same regions have been shown to underlie schema-related mem-
ory (Tse et al., 2007, 2011; van Kesteren et al., 2012; Spalding et
al., 2015; Brod et al., 2017; Gilboa and Marlatte, 2017; Gilboa and
Moscovitch, 2017; Baldassano et al., 2018; Romero et al., 2019).
Thus, hippocampal-vmPFC memory integration mechanisms
may serve to link related information to a coherent representa-
tion in service of a range of generalization tasks, including con-
cept learning.

Congruency and reactivation aid memory integration
Understanding how the brain links related information may help
us to take a step further and focus on how memory integration
processes can be enhanced, as desired, for example, in educa-
tional settings. Factors such as congruency between associates
and reactivation of previously learned information have been
shown to facilitate memory integration (Van Kesteren et al.,
2018). However, how the brain achieves such memory improve-
ments and how they link to memory integration processes is yet
unknown.

To examine how enhanced memory integration is realized,
van Kesteren et al. (2019) extended the AB-BC inference para-
digm described in the previous section. They added a factor of
congruency between A and C (a scene and an object), which is a
strong enhancing factor in conventional associative memory ex-
periments (van Kesteren et al., 2012, 2013a,b), and asked partic-
ipants to rate the strength of reactivation (subjective reactivation
of the scene) they experienced during BC-learning (pseudoword
with object). Both these congruency and reactivation factors were
expected to yield improved memory integration as was found in a
recent experiment that used a more educationally valid version of
this paradigm (van Kesteren et al., 2018).

This behavioral effect was replicated, and brain activity during
memory integration was correlated with three behavioral factors:
memory, congruency, and reactivation. MTL, including the hip-
pocampus, was related to memory performance, whereas con-
gruency was associated with activity in the vmPFC and the
hippocampus, and reactivation strength revealed an extensive
retrieval network that included the vmPFC and the hippocam-
pus. Thus, hippocampus-vmPFC mechanisms may contribute to
several aspects and modulatory factors involved in concept learn-
ing. This work extends prior work on schema-related memory
benefits (Ghosh and Gilboa, 2014; Ryan et al., 2016) and provides
new insights into how schema-congruency and active reactiva-
tion of existing knowledge improves memory and integration.

Integration of reward and concept representations
in categorization
Although we so far discussed the role of vmPFC in memory inte-
gration, schema formation, and the acquisition of conceptual
representations, a separate line of research on economic decision
making emphasizes the role of vmPFC in reward processing
(Kable and Glimcher, 2009). Reward is an important factor af-
fecting categorization (Seger and Peterson, 2013), but has so far
received little attention in neuroscientific studies of concept
learning. Intriguingly, research into reward and value-based de-
cision making has identified cortical regions that are also impor-
tant for categorization (Summerfield and Tsetsos, 2012; Jocham
et al., 2014). Here we focus on the vmPFC and an additional area,
the intraparietal sulcus (IPS)/inferior parietal (IP), both of which
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are associated with both reward and concept representation.
IPS/IP is active during categorization and is sensitive to category
representation in humans (Seger et al., 2015; Wheeler et al., 2015)
and nonhuman primates (Sarma et al., 2016).

Braunlich and Seger (2016; K. Braunlich & C.A. Seger, un-
published observations) examined how IPS/IP and vmPFC are
involved in processing the sum of evidence for category member-
ship and associated reward. Braunlich and Seger (2016) devel-
oped a task in which four features probabilistically related to
category membership were presented in series over time. Bayes-
ian model selection showed that the interaction between evidence
and time to end of trial better accounted for activity than evi-
dence alone in IPS/IP. K. Braunlich and C.A. Seger (unpublished
observations) examined how reward availability affected evi-
dence integration and decision during categorization using this
task. Subjects were informed about when reward would be avail-
able; for example, correct responses would yield a reward when
the third feature was presented, but not before or after. Activity in
IPS/IP increased as a function of the amount of evidence and time
to reward. In addition, the vmPFC and anterior hippocampus
showed a ramping pattern of activity as time of reward ap-
proached, indicating representation of both the sum of evidence
and the temporal distance for reward availability. Functional
connectivity analysis found hippocampus connectivity with vi-
sual cortex, and vmPFC with both visual cortex and frontopari-
etal regions, indicating that the vmPFC may receive input from
these regions that can be used to monitor the ongoing decision
process and maximize reward.

Recent complementary studies have examined how reward
expectation is integrated with representational knowledge during
categorization. Braunlich et al. (2017) had subjects learn to cate-
gorize abstract polygonal stimuli formed as distortions of a pro-
totypical stimulus according to two different decision criteria and
found that both IPS/IP and vmPFC were sensitive to distance in
perceptual space from the stimulus to the current criterion. C.A.
Seger, K. Braunlich, and Z. Liu (unpublished observations) re-
quired subjects to combine categorization with information
about reward probability to predict outcomes. On each trial, par-
ticipants saw a cue indicating the probability that correct perfor-
mance would be rewarded (0, 25, 50, 75, or 100%), then viewed
and categorized a stimulus, and finally received reward. During
stimulus presentation, IPS/IP was sensitive to the interaction of
prototype distance and reward probability, and coded for reward,
category, and their interaction in a representational similarity
analysis. IPS/IP was also sensitive to both reward and prototype
distance prediction error at the time of feedback, indicating a
possible role in updating representations based on feedback. The
vmPFC was sensitive to reward probability at cue and feedback,
indicating a role in maintaining contextual information about
reward probability across the trial and integrating it with categor-
ical information. This work provides an intersection of vmPFC
research on memory integration discussed here with otherwise
separate research that emphasizes the role of vmPFC in subjective
value representation through integration of multiple converging
inputs (Clithero and Rangel, 2014; Berkman et al., 2017).

Modeling the role of the rostrolateral prefrontal cortex in
category learning and generalization
Most concept-learning studies and general computational litera-
ture have focused on memory processes and similarity-based
mechanisms: how memory representations are built around
common information and retrieved on the basis of representa-
tional overlap to support novel judgments. Similarity-based

processes are critical for long-term category representation
(Nosofsky, 1986), however, many theories suggest that such pro-
cesses are supplemented, in some cases, by inferential processes
that are akin to using logical rules or reasoning strategies (Smith
and Sloman, 1994; Ashby et al., 1998). For example, rules may
augment categorization during early stages of learning while
long-term representations are being formed and may be called
upon again during generalization when people are confronted
with stimuli that are ambiguous or similar to multiple previously
acquired category representations (Nosofsky et al., 1994; Palmeri
and Nosofsky, 1995; Erickson and Kruschke, 1998; Juslin et al.,
2001).

How inferential categorization processes are instantiated in
the brain is an open question. Broad neurobiological category-
learning theories have focused on the lateral PFC as a whole in the
operation of inferential and executive reasoning processes (Seger
and Miller, 2010; Ashby and Maddox, 2011). However, they do
not attempt to distinguish among subregions of the lateral PFC
with respect to such processes. In the broader literature, abstract
reasoning processes such as higher-level reasoning, problem
solving, and analogy are often thought to depend on the rostro-
lateral PFC (rlPFC; Christoff et al., 2001; Kroger et al., 2002;
Bunge et al., 2005; Green et al., 2006; Hampshire et al., 2011;
Watson and Chatterjee, 2012). Evidence for this comes not only
from activation-based studies of such abstract reasoning tasks,
but also from anatomical data, such as the area’s relative size in
humans compared with other primates (Burgess et al., 2007) and
its growth trajectory during development, which tracks the emer-
gence of higher-level reasoning in children and adolescence (Du-
montheil, 2014; Vendetti and Bunge, 2014).

Despite being associated with many abstract reasoning capa-
bilities, there is yet to be an encompassing theory of rlPFC that
explains its underlying computational contribution across do-
mains. Hierarchical control theory has the most general account
of rlPFC function, and suggests that it sits atop a rostrocau-
dal gradient of abstraction in the lateral cortex (Badre and
D’Esposito, 2007, 2009). However, more recent work on control
theory has challenged the notion that rlPFC is simply involved in
abstract control processes, based on evidence that the rlPFC ac-
tivates for a number of processes that are not easy to align with the
idea that it is solely involved in abstract control (Badre and Nee,
2018). For example, it tends to be activated when people make the
decision to explore new choice options rather than exploit op-
tions with the current highest expected value in reinforcement
learning (Daw et al., 2006) and it has interesting temporal trajec-
tories across sequential tasks that do not vary temporally in their
control demands per se (Desrochers et al., 2015, 2019).

Recent research in category learning may shed light on how
the rlPFC diverges from the other, more caudal, areas of the
lateral PFC. Converging evidence across a number of studies sug-
gests that the rlPFC instantiates an inferential process that is sen-
sitive to the novelty and decisional uncertainty associated with a
stimulus. Specifically, people will tend to engage rules when con-
fronted with a stimulus that is both novel and difficult to catego-
rize given the previously learned category representations. In
support of this hypothesis, using an iterative rule-learning task,
Paniukov and Davis (2018) found that the rlPFC is engaged early
in learning and remains engaged as long as uncertainty remains
about the correct category rule. Davis et al. (2017) showed that
the rlPFC was more engaged during acquisition of relational
category-learning rules than acquisition of feature-based cate-
gory rules. Later, once the relational rules were well learned, the
rlPFC was not more activated for relational rules across the
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board, but instead was more activated to the extent that stimuli
were novel examples of the previously learned relations. Finally,
O’Bryan et al. (2018) showed that the rlPFC tracked the contri-
bution of dissimilarity-based heuristics during generalization to
novel ambiguous items. Such dissimilarity-based processes are
thought to be based on higher-level inferential strategies. To-
gether, these results suggest that the rlPFC integrates decisional
information and stimulus novelty to determine when to use in-
ferential processes in category learning and generalization.

Different prefrontal cortex dynamics for learning at different
levels of abstraction
Many studies support the view that the lateral PFC plays a central
role for concepts when they require high levels of abstraction
(Badre and D’Esposito, 2009) and rule-based reasoning (Davis et
al., 2017; O’Bryan et al., 2018). But lateral PFC has also been
implicated in low-level, similarity-based categorization (Davis et
al., 2017; O’Bryan et al., 2018) and representation of specific
exemplars (Mack et al., 2013). Bowman and Zeithamova (2018,
2019) suggested that distinct processes and types of representa-
tions can be involved in concept learning, with their relative con-
tribution depending on the coherence among category members.
Lower coherence (lower similarity among category members)
makes the formation of generalized representations based on
similarity difficult and may require a higher level of abstraction.
However, are high-level abstractions simply “more of the same”,
using the same mechanisms and networks as low-level abstrac-
tions? Or do low- and high-level abstractions involve distinct
anatomical circuits and functional mechanisms in the PFC?

Important insights for resolving this question can come from
neurophysiological recordings, which provide single-neuron res-
olution, but can also provide information about how groups of
neurons communicate through analysis of their collective activity
in local field potentials. To investigate how category abstraction is
organized in prefrontal cortex, Wutz et al. (2018) recorded from
multielectrode arrays in lateral PFC and trained monkeys in a
dot-pattern category task (Posner and Keele, 1968) that provides
a parametrically controlled and mathematically straightforward
way to separate categories by level of abstraction. On each record-
ing day, the monkeys learned to categorize dot patterns (i.e.,
exemplars), which were created by spatially distorting an under-
lying prototype pattern. Two new, pseudorandomly generated
category prototypes were used per recording day, each of which
was organized in a sequence of training blocks containing an
increasing number of exemplars. By this, Wutz et al. (2018) made

sure that the monkeys generalized over a large pool of exemplars
(i.e., 64 –256 per category) and eventually learned to extract the
underlying category prototype. Critically, varying the degree of
spatial distortion of the exemplars from the prototype allowed
the authors to control the required level of abstraction for the
category decision. Low-distortion exemplars look alike and can
be categorized based on the similarity of their sensory features.
High-distortion exemplars, however, can look very different
from each other requiring greater abstraction.

Wutz et al. (2018) found category abstraction organized in
different subregions in the PFC. The ventrolateral PFC (vlPFC)
was more engaged for low-level abstractions, whereas the dorso-
lateral PFC (dlPFC) processed more high-level abstractions.
Beyond this anatomical distinction, however, the combined anal-
yses of spiking activity and local field potentials also suggested
distinct functional mechanisms based on different temporal dy-
namics and frequency characteristics. In terms of frequency,
there is growing evidence that gamma versus beta oscillations are
involved in bottom-up versus top-down processing, respectively
(Buschman and Miller, 2007; Jensen et al., 2007; Engel and Fries,
2010). Category signals for low-level abstractions in the vlPFC
were found in gamma oscillations (60 –160 Hz), evoked poten-
tials, and spiking activity when the exemplars were shown and
their sensory properties were processed. In contrast, the dlPFC
showed stronger category signals for high-level abstractions in
beta oscillations (10 –35 Hz) throughout the memory delay ep-
och when the exemplars had to be kept in mind. Moreover, spik-
ing activity in the dlPFC during the delay occurred at specific
phases of its ongoing beta-band oscillations. This pattern sug-
gested that neurons in the vlPFC were more driven by bottom-up
inputs, whereas in the dlPFC neurons fired more in sync with its
inherent, top-down dynamics during category processing.

The study demonstrated that distinct neural circuits (vlPFC vs
dlPFC) communicate through distinct frequency channels (gamma
vs beta) and at different times (sample vs delay epoch) when
inferring regularities about the world on low versus high levels of
abstraction (Fig. 2). By extension, these findings support the ex-
istence of two distinct functional mechanisms (bottom-up vs
top-down) for category abstraction in the PFC. Gamma oscilla-
tions are typically linked to the feedforward flow of cortical acti-
vation (Bastos et al., 2015; Jensen et al., 2015) and the vlPFC
receives direct inputs from inferior temporal cortex (O’Reilly,
2010), potentially continuing its functional properties into pre-
frontal cortex function. Therefore, category processing through
the vlPFC-gamma network may be viewed as an object-

Figure 2. A schematic depiction of results from Wutz et al. (2018). Distinct neural circuits communicate through distinct channels when concept learning requires low levels of abstraction versus
high levels of abstraction.
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recognition/pattern-matching problem governed by bottom-up
principles and subserving low-level abstraction. By contrast, beta
oscillations support cortical feedback (Bastos et al., 2015; Jensen
et al., 2015) and there is stronger connectivity between the dlPFC
and parietal cortex (O’Reilly, 2010). Thus, the dlPFC-beta net-
work may implement top-down, experience-based generaliza-
tion and identify more abstract, conceptual relationships that
transcend appearance beyond object recognition. Given that dif-
ferent regions of the lateral PFC contribute to category formation
through distinct functional circuits because of their differential
connectivity to posterior cortex, a critical goal for future research
will be to delineate whether the lateral PFC is organized on the
basis of representation type (rule vs similarity-based) or if more
general control mechanisms define its topography (e.g., gating or
branching; Badre and Nee, 2018).

In conclusion, the current review highlights representative
samples from a recent boom of concept learning studies. By le-
veraging well developed computational models to interrogate
neural mechanisms and representations, this work has impli-
cated a broad network of brain regions including the hippocam-
pus, PFC, and parietal cortices. Importantly, this work has
significantly advanced our understanding of concept learning by
characterizing the nature of the component mechanisms and
their underlying neural machinery. The result is a converging
neurocomputational account of concept learning that integrates
brain systems involved in attention, memory, reasoning, cogni-
tive control, and reward processing. Theoretically, this work
brings resolution to the decades-long debate on the nature of
category representations and emphasizes the need for compre-
hensive theories that bridge brain and behavior. Looking for-
ward, understanding how these multiple brain systems interact
throughout learning to support the flexible formation and use of
concept knowledge is a key research aim. Notably, research in
concept learning is well positioned to reach the holy grail of the
computational model-based neuroscientific approach: not only
are formal theories used to inform understanding of neural
mechanisms, findings from the brain will undoubtedly motivate
meaningful extensions to formal theories.
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